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Poiseuille Flow in a Heated Granular Gas
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The planar Poiseuille flow induced by a constant external field (e.g., gravity)
has been the subject of recent interest in the case of molecular gases. One of
the predictions from kinetic theory (confirmed by computer simulations) has
been that the temperature profile exhibits a bimodal shape with a local mini-
mum in the middle of the slab surrounded by two symmetric maxima, in con-
trast to the unimodal shape expected from the Navier–Stokes (NS) equations.
However, from a practical point of view, the interest of this non-Newtonian
behavior in molecular gases is rather academic since it requires values of grav-
ity extremely higher than the terrestrial one. On the other hand, gravity plays a
relevant role in the case of granular gases due to the mesoscopic nature of the
grains. In this paper we consider a dilute gas of inelastic hard spheres enclosed
in a slab under the action of gravity along the longitudinal direction. In addi-
tion, the gas is subject to a white-noise stochastic force that mimics the effect
of external vibrations customarily used in experiments to compensate for the
collisional cooling. The system is described by means of a kinetic model of the
inelastic Boltzmann equation and its steady-state solution is derived through
second order in gravity. This solution differs from the NS description in that
the hydrostatic pressure is not uniform, normal stress differences are present, a
component of the heat flux normal to the thermal gradient exists, and the tem-
perature profile includes a positive quadratic term. As in the elastic case, this
new term is responsible for the bimodal shape of the temperature profile. The
results show that, except for high inelasticities, the effect of inelasticity on the
profiles is to slightly decrease the quantitative deviations from the NS results.
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1. INTRODUCTION

As is well known, the Poiseuille flow is a typical example of fluid dynamics
described in many textbooks.(1) In its classical formulation, the Poiseu-
ille problem consists of finding the flow velocity and temperature pro-
files of a Newtonian fluid enclosed in a slab or in a pipe and subject to
a longitudinal pressure gradient. Essentially the same effect is generated
when the longitudinal pressure difference is replaced by a uniform gravi-
tational force mg directed longitudinally. This latter mechanism for driv-
ing the Poiseuille flow does not produce longitudinal gradients and so has
proven to be more convenient than the former in computer simulations as
well as from the theoretical point of view, especially to assess the reliabil-
ity of the continuum description.(2–16)

Kinetic theory analyses of the gravity-driven Poiseuille flow based
on an expansion in powers of the gravity strength g,(5,8,13,16) on Grad’s
moment method,(9,11) or on an expansion in powers of the Knudsen num-
ber,(14) show interesting non-Newtonian effects. In particular, to second
order in g the temperature profile includes a positive quadratic term, in
addition to the negative quartic term predicted by the Navier–Stokes (NS)
description. As a consequence of this new term, the temperature pro-
file exhibits a bimodal shape with a local minimum at the middle of the
channel surrounded by two symmetric maxima at a distance of a few
mean free paths. In contrast, the NS hydrodynamic equations predict a
temperature profile with a (flat) maximum at the middle. The Fourier
law is dramatically violated since in the slab enclosed by the two max-
ima the transverse component of the heat flux is parallel (rather than
anti-parallel) to the thermal gradient. This correction to the NS temper-
ature profile is not captured by the next hydrodynamic description, i.e.,
by the Burnett equations.(8,10) The kinetic theory prediction of a bimodal
temperature profile has been confirmed by numerical Monte Carlo simu-
lations of the Boltzmann equation(7,10,15) and by molecular dynamics sim-
ulations.(9,12) On the other hand, when the Poiseuille flow is driven by a
longitudinal pressure gradient instead of an external force, the NS descrip-
tion is in good agreement with Monte Carlo simulations of the Boltzmann
equation.(15)

Notwithstanding its theoretical and academic interest, the Poiseuille
flow induced by gravity is of little practical interest for conventional gases
under terrestrial conditions. At a microscopic level, the relevant dimen-
sionless parameter measuring the strength of gravity is gλ/v2

th, where λ

is the mean free path and vth is a typical molecular speed (or thermal
velocity). The parameter gλ/v2

th measures the effect of gravity on a mol-
ecule between two successive collisions. For instance, in the case of argon
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at room pressure and temperature, one has λ∼700 Å and vth ∼400 m/s,(17)

so that gλ/v2
th ∼5×10−12.

The negligible effect of gravity on molecular gases is a consequence
of their small mean free paths and large thermal velocities over mesoscop-
ic or macroscopic scales. However, this is not necessarily so when dealing
with a “granular” gas,(18–23) i.e., a collection of a large number of discrete
solid particles (or grains) in a fluidized state such that each particle moves
freely and independently of the rest, except for the occurrence of inelastic
binary collisions. Depending on the material properties of the grains, the
solid fraction, and the state of agitation, the parameter gλ/v2

th can take
values within a wide spectrum. Let us take three representative examples.
In ref. 24, the statistical properties of stainless-steel spheres of diameter
σ = 3.175 mm rolling on an inclined surface and driven by an oscillat-
ing wall were experimentally studied. Typical values of the mean free path
and the thermal velocity were λ ∼ 1 cm and vth ∼ 1 cm/s, which leads to
gλ/v2

th ∼103. Experiments on glass beads of diameter σ =4 mm driven by
a vertically oscillating boundary were reported in ref. 25. In those experi-
ments, λ∼σ and vth ∼20 cm/s, so that gλ/v2

th ∼1. As a final example, we
consider the experiments carried out in a flying rocket on bronze spheres
of diameter σ =0.3–0.4 mm excited by vibrations.(26) From the experimen-
tal data corresponding to the most dilute cell one can estimate λ= 1 mm
and vth = 5 m/s; under terrestrial conditions (g = 9.8 m/s2), this implies
gλ/v2

th ∼10−3.
In this paper we address the granular Poiseuille flow generated by

gravity under the assumption that gλ/v2
th is (i) large enough as to produce

noticeable gradients of density, flow velocity, and granular temperature,
but (ii) small enough as to allow for a perturbative treatment; roughly
speaking, this corresponds to 10−3 � gλ/v2

th � 10−1. Since kinetic energy
is continuously being dissipated by inelastic collisions, we assume that the
gas is externally excited by a “heating” mechanism. This guarantees that
the gas is in a (uniform) steady state even in the absence of gravity. As
the simplest way of mimicking energy input through boundary vibrations,
we consider the widely used stochastic force with white noise properties.
This means that every particle receives uncorrelated random kicks. Besides,
the relative magnitude of the kicks scales with the square root of the local
collision rate.

Our main goal is to derive the profiles of the hydrodynamic variables
and their fluxes in the bulk region, and assess to what extent they are
influenced by the degree of inelasticity. In principle, an adequate frame-
work to undertake this task is provided by the Boltzmann equation for
inelastic hard spheres. However, its mathematical intricacy prevents one
from deriving practical results, even in the elastic case, unless Grad’s
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method with a high number of moments(11) or the direct simulation
Monte Carlo method(7,15) are employed. In order to get explicit expres-
sions with a moderate calculation effort, we replace the Boltzmann inelas-
tic collision operator by a much more tractable kinetic model recently
proposed(27) as an extension to granular gases of the celebrated Bhatna-
gar–Gross–Krook (BGK) model for conventional gases.(28) The resulting
kinetic equation is solved through second order in g and the associated
profiles of the hydrodynamic fields and their fluxes are derived. The results
show that the same type of non-Newtonian properties that appear in the
elastic case are present for granular gases as well. On the other hand, for
small and moderate inelasticities, we observe that those effects tend to be
slightly inhibited as the inelasticity increases.

The organization of the paper is as follows. Section 2 is devoted to
the description of the flow under study and its solution in an NS hydro-
dynamic description. The kinetic theory description is presented in Section
3, where a perturbation expansion in powers of gravity is carried out. The
results are summarized and discussed in Section 4. Finally, the main con-
clusions of the paper are briefly presented in Section 5.

2. STATEMENT OF THE PROBLEM

2.1. Inelastic Hard Spheres

Let us consider a granular gas composed of smooth inelastic hard
spheres of diameter σ , mass m, and coefficient of normal restitution α. In
the dilute regime, the one-particle velocity distribution function f (r, v; t)

obeys the (inelastic) Boltzmann equation (29,30)

(
∂t + v ·∇ +g · ∂

∂v
+F

)
f =J [f,f ], (2.1)

where g is the acceleration due to an external force, F is the operator rep-
resenting the action of a given heating mechanism to compensate for the
collisional energy loss, and J [f,f ] is the Boltzmann collision operator. Its
expression is

J [f,f ]=σ 2
∫

dv1

∫
dσ̂ �(v01 · σ̂ )(v01 · σ̂ )

[
α−2f (v′′)f (v′′

1)−f (v)f (v1)
]
,

(2.2)

where the explicit dependence of f on r and t has been omitted. In
Eq. (2.2), � is the Heaviside step function, σ̂ is a unit vector directed
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along the centers of the two colliding spheres at contact, v01 =v−v1 is the
relative velocity, and the pre-collisional or restituting velocities v′′ and v′′

1
are given by

v′′ = v − 1+α

2α
(v01 · σ̂ )σ̂ , v′′

1 = v1 + 1+α

2α
(v01 · σ̂ )σ̂ . (2.3)

The first few moments of the distribution function define the number
density n, the flow velocity u, and the granular temperature T : n(r, t)

n(r, t)u(r, t)
n(r, t)T (r, t)

=
∫

dv

 1
v

m
3 V 2

f (r, v; t), (2.4)

where V = v −u is the velocity relative to the local flow. The macroscopic
balance equations for the local densities of mass, momentum, and energy
follow directly from Eq. (2.1) by taking velocity moments:

Dtn+n∇ ·u =0, (2.5)

Dtu + 1
mn

∇ ·P=g, (2.6)

DtT + 2
3n

(∇ ·q +P :∇u)=−(ζ −γ )T . (2.7)

In these equations, Dt ≡ ∂t +u ·∇ is the material time derivative,

P(r, t)=m

∫
dv VVf (r, v; t) (2.8)

is the pressure or stress tensor,

q(r, t)= m

2

∫
dv V 2Vf (r, v; t) (2.9)

is the heat flux,

ζ(r, t)=− m

3n(r, t)T (r, t)

∫
dv V 2J [f,f ] (2.10)
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is the cooling rate associated with the inelasticity of collisions, and

γ (r, t)=− m

3n(r, t)T (r, t)

∫
dv V 2Ff (r, v; t) (2.11)

is the heating rate associated with the external driving F . Upon writing
Eqs. (2.5) and (2.6) it has been assumed that F preserves the local num-
ber and momentum densities, i.e.,∫

dv Ff (r, v; t)=
∫

dv vFf (r, v; t)=0. (2.12)

Equation (2.10) shows that the cooling rate is a complicated nonlin-
ear functional of f . By dimensional analysis, ζ ∝ nT 1/2, but the propor-
tionality constant is an unknown function of α. A reasonable estimate of
ζ can be obtained by replacing in Eq. (2.10) the actual velocity distribu-
tion function f by its local Maxwellian approximation

f�(r, v; t)=n(r, t)
[

m

2πT (r, t)

]3/2

exp

[
−m(v −u(r, t))2

2T (r, t)

]
. (2.13)

The result is(27,31)

ζ�(r, t)=ν(r, t)
5

12
(1−α2), (2.14)

where

ν = 16
5

nσ 2
(

πT

m

)1/2

(2.15)

is an effective collision frequency, independent of the coefficient of restitu-
tion α.

2.2. Gravity-driven Poiseuille Flow

Now we assume that the granular gas is enclosed between two infi-
nite parallel plates normal to the y-axis. A constant external force per unit
mass (e.g., gravity) g = −ĝz is applied along a direction ẑ parallel to the
plates. The geometry of the problem is sketched in Fig. 1.
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Fig. 1. Sketch of the planar Poiseuille flow induced by a gravitational force.

As done in laboratory experiments (and in computer simulations), we
will assume that energy is externally injected into the system to compen-
sate for the collisional cooling, so that a steady state is achieved even if the
gravity field is formally switched off. In real experiments, (24–26) this is usu-
ally achieved by means of boundary vibrations of small amplitude A∼σ

and high frequency ω/2π ∼10–100 Hz, so that the maximum accelaration
�=Aω2 is usually several times larger than the acceleration due to gravity
on Earth. However, this type of realistic heating through the boundaries
is difficult to deal with at a theoretical level due to unavoidable boundary
effects. These difficulties are overcome by assuming a bulk heating mecha-
nism acting on all the particles simultaneously. The most commonly used
type of bulk driving for inelastic particles consists of a stochastic force in
the form of Gaussian white noise.(32–39) More precisely, each particle i is
subject to the action of a stochastic force Fi (t) that has the properties

〈Fi (t)〉=0, 〈Fi (t)Fj (t
′)〉= Im2ξ2δij δ(t − t ′), (2.16)

where I is the 3×3 unit matrix and ξ2 represents the strenght of the cor-
relation. According to this white noise driving, during a small time step
δt each particle i receives an independent “kick” such that its velocity is
incremented by a random value δvi with the statistical properties(37)

〈δvi〉=0, 〈δviδvj 〉= Iξ2δtδij . (2.17)
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Therefore, |δv|∼ ξ
√

δt . The associated operator F appearing in the Boltz-
mann equation (2.1) is(33)

F =−ξ2

2

(
∂

∂v

)2

. (2.18)

Thus ξ2/2 plays the role of a diffusion coefficient in velocity space. The
operator (2.18) verifies the properties (2.12), while insertion into Eq. (2.11)
shows that the heating rate is

γ = mξ2

T
. (2.19)

It still remains to define the spatial dependence of γ . By simplicity,
we assume that the white noise driving compensates locally for the colli-
sional energy loss. This means that γ = ζ or, equivalently, ξ = √

ζT /m at
any point. This choice can be justified by the following argument. Since,
as seen above, |δv|∼ ξ

√
δt , the choice γ = ζ implies that

|δv|
vth

∼
√

νδt (1−α2), (2.20)

where use has been made of Eq. (2.14) and of vth ∼ √
T/m. Equation

(2.20) means that the relative random increment of velocity at a given
point scales as the square root of the average collision number at that
point. When heating the gas through the boundaries, the energy input is
propagated to the whole system by means of collisions. Since the white
noise driving intends to mimic that effect, it is quite natural that the rela-
tive magnitude of the kicks is larger in those regions where the collisions
are more frequent.

By considering the above white noise excitation mechanism, a steady
state can be expected in which the physical quantities depend on the coor-
dinate y only and the flow velocity is parallel to the z axis, u =uz(y)̂z. In
that case, the Boltzmann equation (2.1) becomes

(
−ζT

2m

∂2

∂v2
−g

∂

∂vz

+vy

∂

∂y

)
f =J [f,f ]. (2.21)
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Similarly, the balance equations for momentum and energy, Eqs. (2.6) and
(2.7), reduce to

∂Pyy

∂y
= 0, (2.22)

∂Pyz

∂y
= −ρg, (2.23)

Pyz

∂uz

∂y
+ ∂qy

∂y
= 0, (2.24)

where ρ = mn is the mass density. Note that the inelasticity does not
appear explicitly in the balance equations (2.22)–(2.24).

2.3. Navier–Stokes Description

In the Newtonian description the fluxes are related to the hydrody-
namic gradients by the NS constitutive equations.(31,40,41) In the geometry
of the Poiseuille problem they read

Pxx = Pyy =Pzz =p, (2.25)

Pyz = −η
∂uz

∂y
, (2.26)

qy = −κ
∂T

∂y
−µ

∂n

∂y
, (2.27)

qz = 0, (2.28)

where p=nT = (1/3)Tr P is the hydrostatic pressure, η is the the shear vis-
cosity, κ is the thermal conductivity, and µ is a transport coefficient with
no analog for elastic fluids. These transport coefficients can be explicitly
derived from the Boltzmann equation (2.1) by application of the Chap-
man–Enskog method in the first Sonine approximation. In the case of the
white noise heating (2.18) with ξ =√

ζT /m their expressions are(41)

η= p

νη

, κ = 5p

2mνκ

(1+2k) , µ= 5T 2

2mνκ

k, (2.29)

where

νη = ν

4
(1+α) (3−α)

(
1− 1

32
k

)
, (2.30)

νκ = ν

3
(1+α)

(
49−33α

16
+ 19−3α

512
k

)
. (2.31)
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In Eqs. (2.29)–(2.31), ν is the effective collision frequency defined by
Eq. (2.15) and k is the kurtosis of the homogeneous heated state. Its
expression is well approximated by(33)

k = 16(1−α)(1−2α2)

241−177α +30α2(1−α)
. (2.32)

The kurtosis k is rather small for all α. In particular, |k| < 0.013 for
0.6�α �1. Therefore, one can neglect k in (2.29)–(2.31) to get

η	 p

ν

4
(1+α) (3−α)

, κ 	 5p

2mν

48
(1+α) (49−33α)

, µ	0. (2.33)

In the interval 0.6�α �1, the expressions (2.33) for η and κ deviate
from those of (2.29) less than 0.04 and 3%, respectively. Besides, the ratio
nµ/T κ is smaller than 0.013, so that µ can be neglected. Note that the
negligible role played by µ does not hold in the homogeneous cooling
state.(31,40) It is worth pointing out that, while the shear viscosity mono-
tonically increases with inelasticity, the thermal conductivity starts decreas-
ing with increasing inelasticity, reaches a minimum value around α = 0.4,
and then slightly increases for α � 0.4. This non-monotonic behavior of
κ in the heated state contrasts with the one found in the free cooling
case.(31,41,42)

Combining Eqs. (2.22)–(2.27), we get

∂p

∂y
= 0, (2.34)

∂

∂y
η
∂uz

∂y
= ρg, (2.35)

∂

∂y
κ ′ ∂T

∂y
= −η

(
∂uz

∂y

)2

, (2.36)

where κ ′ = κ − nµ/T 	 κ. Equation (2.35) gives a parabolic-like velocity
profile, that is characteristic of the Poiseuille flow. The temperature profile
has, according to Eq. (2.36), a quartic-like shape. Strictly speaking, these
NS profiles are more complicated than just polynomials due to the tem-
perature dependence of the transport coefficients. Since the hydrodynamic
profiles must be symmetric with respect to the middle plane y = 0, their
odd derivatives must vanish at y =0. Thus, from Eqs. (2.35) and (2.36) we
have



Poiseuille Flow in a Heated Granular Gas 911

∂2uz

∂y2

∣∣∣∣∣
y=0

= ρ0g

η0
,

∂2T

∂y2

∣∣∣∣∣
y=0

=0,
∂4T

∂y4

∣∣∣∣∣
y=0

=−2
ρ2

0g2

η0κ
′
0
, (2.37)

where the subscript 0 denotes quantities evaluated at y = 0. According to
Eq. (2.37), the NS equations predict that the temperature has a maximum
at the middle layer y = 0. As we will see in Section 3, the kinetic theory
description shows that the temperature actually exhibits a local minimum
at y =0, since ∂2T/∂y2

∣∣
y=0 is a positive quantity (of order g2).

The closed set of nonlinear equations (2.34)–(2.36) cannot be solved
analytically for arbitrary g due to the spatial dependence of the transport
coefficients. On the other hand, if the acceleration of gravity is sufficiently
small at the microscopic scale, we can expand in powers of g and keep the
first few terms only. To second order, the NS hydrodynamic profiles near
the layer y =0 are

uz(y) = u0 + ρ0g

2η0
y2 +O(g3), (2.38)

T (y) = T0 − ρ2
0g2

12η0κ
′
0
y4 +O(g4). (2.39)

The space variable y can be eliminated between Eqs. (2.38) and (2.39) to
obtain the following nonequilibrium “equation of state”:

T =T0 − η0

3κ ′
0
(u0 −uz)

2 +O(g4). (2.40)

The NS profiles for the fluxes are

Pyz(y) = −ρ0gy +O(g3), (2.41)

qy(y) = ρ2
0g2

3η0
y3 +O(g4). (2.42)

3. KINETIC THEORY DESCRIPTION

3.1. A Kinetic Model

In this Section, we will see that most of the NS predictions discussed
in the preceding Subsection do not hold true, even to first order in g,
when the problem is attacked from a more detailed kinetic point of view.
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In principle, the task consists of solving the Boltzmann equation (2.21)
through order g2 in a region near the central layer y =0.

Given the mathematical complexity of the Boltzmann collision opera-
tor (2.2), especially in the case of inelastic collisions, we simplify the anal-
ysis by replacing J [f,f ] by a BGK-like kinetic model:(27,43)

J [f,f ]→−β(α)ν(f −f�)+ ζ�

2
∂

∂v
· [(v −u) f ] , (3.1)

where ν is the collision frequency (2.15), f� is the local Maxwellian dis-
tribution (2.13), and ζ� is the associated cooling rate (2.14). In addition,
β(α) is a dimensionless function of the coefficient of restitution that can
be freely chosen to optimize agreement with the Boltzmann description.
Equation (3.1) differs from the original formulation of the model kinetic
equation(27) in that the exact (local) homogeneous cooling state of the
Boltzmann equation is replaced by f� and the exact cooling rate (2.10) is
approximated by ζ�. Confirmation of the quantitative agreement between
the kinetic model and the Boltzmann equation has been found for the sim-
ple shear flow(44,45) and the nonlinear Couette flow.(46)

The first term on the right-hand side of (3.1) describes collisional
relaxation towards the local Maxwellian with a collision rate βν, while the
second term describes the dominant collisional cooling effects. The neces-
sity for this term to accurately represent the spectrum of the Boltzmann
collision operator is discussed in ref. 27. However, it can be viewed more
simply as an effective “drag” force that produces the same energy loss rate
as that produced by the inelastic collisions. The NS transport coefficients
derived from the model (3.1) in the case of white noise heating are(42)

η= p

βν + ζ�

, κ = 5p

2m
(
βν + 3

2ζ�

) , µ=0. (3.2)

A simple choice for the parameter β is β = (1 + α)/2.(43) On the other
hand, comparison with the (approximate) Boltzmann results (2.33) shows
that the shear viscosity is reproduced if β takes the value

β = (1+α)
2+α

6
, (3.3)

while the thermal conductivity is reproduced if

β = (1+α)
19−3α

48
. (3.4)
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The discrepancy between Eqs. (3.3) and (3.4) persists in the elastic limit
(α =1) and is a well-known limitation of the BGK model. As will be seen
in Section 4, one can partially circumvent this problem by expressing the
final results in terms of η and κ.

Inserting the model (3.1) into Eq. (2.21), we get the kinetic equation(
−g

∂

∂vz

+vy

∂

∂y

)
f =−βν(f −f�)+ ζ�

2
∂

∂v
·
(

V + T

m

∂

∂v

)
f, (3.5)

where, for consistency, we have made the approximation ζ → ζ� in Eq.
(2.21). In order to focus on the deviations from the local equilibrium dis-
tribution, let us write

f =f�(1+�). (3.6)

Then, Eq. (3.5) becomes

(1+�)

[
Vy∂̃y log f� −

(
g +Vy

∂uz

∂y

)
∂

∂Vz

log f�

]
=
(

g +Vy

∂uz

∂y

)
∂

∂Vz

�−Vy∂̃y�− (ν′ − ζ�)�+ ζ�

2

(
T

m

∂

∂V
−V

)
· ∂

∂V
�,

(3.7)

where the operator ∂̃y ≡∂/∂y + (∂uz/∂y)∂/∂Vz derives with respect to y at
constant V (i.e., not at constant v). Moreover, in Eq. (3.7) we have intro-
duced the modified collision frequency ν′ ≡βν + ζ�. As Eq. (3.2) shows, ν′
is the effective collision frequency associated with the shear viscosity of the
heated granular gas in the kinetic model.

Since we are interested in the solution of Eq. (3.7) in the bulk, it is
convenient to take the state at the mid point y =0 as a reference state and
define the following dimensionless quantities:

V∗ = V/v0, y∗ =yν′
0/v0, f ∗

� =f�v
3
0/n0, (3.8)

p∗ = p/p0, u∗ =u/v0, T ∗ =T/T0, g∗ =g/ν′
0v0, (3.9)

ν′∗ = ν′/ν′
0, P∗ =P/p0, q∗ =q/p0v0, (3.10)

where, as in Eqs. (2.37)–(2.42), the subscript 0 denotes quantities at y =
0. In particular, v0 = (2T0/m)1/2 is the thermal velocity vth at y = 0. The
reduced quantity y∗ measures distance in units of a nominal mean free



914 Tij and Santos

path, while g∗ measures the strength of the gravity field on a particle mov-
ing with the thermal velocity along a distance of the order of the mean
free path. The choice of 1/ν′

0 (which depends on α) instead of 1/ν0 (which
is independent of α) as the time unit is suggested by a larger simplicity in
the calculations stemming from the kinetic model. In any case, in Section
4 we will summarize the results in real units, so the final expressions are
independent of the specific choice of reduced quantities.

In the above units, the kinetic equation (3.7) becomes

(1+�)

[
V ∗

y ∂̃y∗ log f ∗
� + 2V ∗

z

T ∗

(
g∗ +V ∗

y

∂u∗
z

∂y∗

)]
=
(

g∗ +V ∗
y

∂u∗
z

∂y∗

)
∂

∂V ∗
z

�

−V ∗
y ∂̃y∗�−ν′∗ (1− ζ ∗

0

)
�+ ζ ∗

0
ν′∗

2

(
T ∗

2
∂

∂V∗ −V∗
)

· ∂

∂V∗ �,

(3.11)

where

∂̃y∗ log f ∗
� = ∂ log p∗

∂y∗ +
(

V 2

T
− 5

2

)
∂ log T ∗

∂y∗ . (3.12)

On the right-hand side of Eq. (3.11) we have taken into account that ζ� =
ζ ∗

0 ν′, where [cf. Eq. (2.14)]

ζ ∗
0 =

5
12 (1−α2)

β(α)+ 5
12 (1−α2)

(3.13)

is a pure number that only depends on the coefficient of restitution. It
gives the cooling rate at any given point in units of the modified collision
frequency ν′ at that same point.

Our purpose is to solve Eq. (3.11) to second order in g∗ and get the
associated hydrodynamic profiles.

3.2. Perturbation Expansion

In this Section, all the quantities will be understood to be expressed
in reduced units and the asterisks will be dropped. The expansion of � in
powers of g is

�=�(1)g +�(2)g2 +O(g3), (3.14)
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where we have taken into account that the solution of Eq. (3.5) in the
absence of gravity is f =f� with uniform n, u, and T . The expansions for
the hydrodynamic fields have the forms

p = 1+p(2)g2 +O(g4), (3.15)

uz = u(1)g +O(g3), (3.16)

T = 1+T (2)g2 +O(g4). (3.17)

Here we have taken into account that, because of the symmetry of the
problem, p and T are even functions of g, while uz is an odd function.
Also, without loss of generality, we have taken u0 =0, i.e., we are perform-
ing a Galilean change to a reference frame moving with the fluid at y =0.
Since ν′ =pT −1/2, we have

ν′ =1+
(

p(2) − 1
2
T (2)

)
g2 +O(g4). (3.18)

Nevertheless, only ν′ =1 is needed in the evaluation of �(1) and �(2).
In order to solve Eq. (3.11) at each order, we will need to use the con-

sistency conditions ∫
dV f�� = 0, (3.19)∫

dV Vyf�� = 0, (3.20)∫
dV Vzf�� = 0, (3.21)∫
dV V 2f�� = 0. (3.22)

1. First order

To first order in g, Eq. (3.11) yields

(1−A)�(1) =− 2
1− ζ ∗

0
Vz

(
1+Vy

∂u(1)

∂y

)
≡φ(1), (3.23)

where A is the operator

A= ζ ∗
0

2(1− ζ ∗
0 )

(
1
2

∂

∂V
−V

)
· ∂

∂V
− 1

1− ζ ∗
0

Vy∂̃y. (3.24)
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The function φ(1) has a known velocity dependence. Its space dependence
occurs through u(1), which remains unknown so far. In order to solve Eq.
(3.23), we will follow a heuristic procedure. First, we guess that the first-
order velocity profile is parabolic:

u(1)(y)=u
(1)

2 y2. (3.25)

Next, we note that the formal solution to Eq. (3.23) is �(1) =∑∞
k=0 Akφ(1)

and that the functional structure of Akφ(1) remains the same for any
k. Consequently, the solution to Eq. (3.23) must have such a structure,
namely

�(1)(y,V)=Vz(a0 +a1V
2
y +a2Vyy). (3.26)

Equations (3.25) and (3.26) have the same structure as the solution of the
BGK equation in the elastic case.(5,13) Insertion of Eq. (3.26) into Eq.
(3.23) allows one to identify the coefficients a0, a1, a2. The result is

a0 =4
2ζ ∗

0 u
(1)

2 − ζ ∗
0 −2

4− ζ ∗
0

2
, a1 = 8u

(1)

2

2+ ζ ∗
0

, a2 =−4u
(1)

2 . (3.27)

The consistency conditions (3.19), (3.20), and (3.22) are verified by sym-
metry. The coefficient u

(1)

2 is determined by the condition (3.21) with the
result

u
(1)

2 =1. (3.28)

Once we know �(1) explicitly, we can get the non-zero components of
the fluxes to first order. They are

P (1)
yz (y) = 2

∫
dV VyVzf0�

(1) =−2y, (3.29)

q(1)
z (y) =

∫
dV V 2Vzf0�

(1) = 2
2+ ζ ∗

0
, (3.30)

where f0 =π−3/2e−V 2
is f� at y =0.



Poiseuille Flow in a Heated Granular Gas 917

2. Second order

We proceed in a similar way as before. The equation for �(2) is

(1−A)�(2) = 1
1− ζ ∗

0

(
1+Vy

∂u(1)

∂y

)(
∂

∂Vz

−2Vz

)
�(1)

− Vy

1− ζ ∗
0

[
∂p(2)

∂y
+
(

V 2 − 5
2

)
∂T (2)

∂y

]
≡φ(2). (3.31)

Now, we guess the profiles
p(2)(y) = p

(2)

2 y2, (3.32)

T (2)(y) = T
(2)

2 y2 +T
(2)

4 y4. (3.33)
The structure of Akφ(2) suggests the trial function

�(2)(y,V) = b0 +b1V
2
y +b2Vyy +b3y

2 +b4V
4
y +b5V

3
y y +b6V

2
y y2

+b7Vyy
3 +V 2

z

(
c0 + c1V

2
y + c2Vyy + c3y

2 + c4V
4
y

+c5V
3
y y + c6V

2
y y2

)
+V 2

(
d0 +d1V

2
y +d2Vyy +d3y

2

+d4V
4
y +d5V

3
y y +d6V

2
y y2 +d7Vyy

3
)

. (3.34)

Insertion into Eq. (3.31) allows one to get the coefficients bi , ci , and di

in terms of p
(2)

2 , T
(2)

2 , and T
(2)

4 . Condition (3.20) is identically satisfied
regardless of the values of p

(2)

2 , T
(2)

2 , and T
(2)

4 , while Eq. (3.21) is verified
by symmetry. On the other hand, conditions (3.19) and (3.22) yield

p
(2)

2 = 24
5

, T
(2)

2 = 4
25

38+43ζ ∗
0 +17ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )
, T

(2)

4 =− 2
15

(2+ ζ ∗
0 ).

(3.35)

The expressions of the coefficients bi , ci , and di as functions of α are
given in Appendix A. From �(2) we can calculate the second order con-
tributions to the fluxes:

P (2)
yy = p(2) +2

∫
dV V 2

y f0�
(2) =−24

25

102+87ζ ∗
0 +13ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2
, (3.36)

P (2)
zz (y) = p(2) +2

∫
dV V 2

z f0�
(2) = 32

25

82+67ζ ∗
0 +8ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2
+ 56

5
y2,

(3.37)

q(2)
y (y) =

∫
dV V 2V 2

y f0�
(2) = 4

3
y3. (3.38)
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4. SUMMARY AND DISCUSSION

4.1. Hydrodynamic Profiles

Let us summarize here the main results obtained from the kinetic
model through second order in the gravity field. The hydrodynamic pro-
files are given by Eqs. (3.15)–(3.17), (3.25), (3.28), (3.32), (3.33), and (3.35).
Expressed in real units, they are

p(y)=p0

[
1+ 6

5

(
mg

T0

)2

y2

]
+O(g4), (4.1)

uz(y)=u0 + ρ0g

2η0
y2 +O(g3), (4.2)

T (y)=T0

[
1− ρ2

0g2

12η0κ0T0
y4+ 1

25

38+43ζ ∗
0 +17ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )

(
mg

T0

)2

y2

]
+O(g4).

(4.3)

In Eqs. (4.2) and (4.3), η0 and κ0 = κ ′
0 are the NS transport coefficients

(evaluated at the mid point y = 0) of the granular gas heated by the sto-
chastic force. In the kinetic model, those transport coefficients are given
by Eq. (3.2). Note that the elimination of the collision frequencies ν or
ν′ =βν + ζ� in favor of the transport coefficients η and κ allows us to cir-
cumvent the limitation inherent to BGK-like models of not giving the cor-
rect Prandtl number. In that way, Eqs. (4.1)–(4.3) can be expected to be
close to the Boltzmann results, as happens in the elastic case.(8,16) There-
fore, in what follows we will use for η and κ the Boltzmann expressions
(2.33). In Eq. (4.3) the parameter ζ ∗

0 is given by Eq. (3.13), where β(α)

can be freely chosen. Here we will take the choice (3.3), which makes the
NS shear viscosity of the kinetic model agree with that of the Boltzmann
equation.

Comparison of Eqs. (4.1)–(4.3) with the NS predictions, Eqs. (2.34),
(2.38), and (2.39) shows that the latter provide an incomplete description
to second order in g. According to the kinetic theory description, the pres-
sure increases parabolically from the mid layer rather than being uniform
and the temperature has an extra positive quadratic term that is responsi-
ble for the fact that the temperature has a local minimum at y =0 rather
than a maximum. This minimum is surrounded by two symmetric max-
ima located at a distance (ymax) from y = 0 of the order of a few mean
free paths. Analogously, the NS equation of state (2.40) is corrected by an
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extra term,

T =T0 − η0

3κ0
(u0 −uz)

2 + 1
30

38+43ζ ∗
0 +17ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )
(p −p0)+O(g4). (4.4)

In order to analyze in detail the temperature profile (4.3), let us mea-
sure the coordinate y in units of the mean free path λ0 = (π

√
2n0σ

2)−1 =
(8/5

√
π)v0/ν0, where v0 =√

2T0/m is the thermal velocity and ν0 is the
collision frequency (2.15), both at y =0. Thus, Eq. (4.4) becomes

T (y)

T0
=1−A4(α)

(
gλ0

v2
0

)2(
y

λ0

)4

+A2(α)

(
gλ0

v2
0

)2(
y

λ0

)2

+O(g4), (4.5)

where

A4(α) = 4
1125π

(1+α)2(3−α)(49−33α),

A2 = 4
25

2719−2741α +706α2

(7−4α)(23−11α)
. (4.6)

The coefficient A2(α) monotonically decreases with increasing inelasticity,
while A4(α) has a maximum at α 	0.46, essentially due to the non-mono-
tonic behavior of the thermal conductivity.

The location ymax of the two symmetric maxima is

ymax =±λ0

√
A2(α)

2A4(α)
. (4.7)

Note that, in the regime gλ0/v
2
0 
 1, ymax is independent of the precise

value of g. The relative value of the maximum temperature is

Tmax −T0

T0
= A2

2(α)

4A4(α)

(
gλ0

v2
0

)2

+O(g4). (4.8)

Of course, if we formally make A2(α)=0 in Eq. (4.5), the NS temperature
profile (2.39) is recovered.

As an illustration of the corrections over the NS description provided by
the kinetic model, let us consider a value gλ0/v

2
0 =0.05. In the case of terres-

trial gravity, the above value corresponds, for instance, to λ0 ∼5 mm and v0 ∼
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Fig. 2. Temperature profiles for gλ0/v
2
0 = 0.05 and α = 0.5 (dotted lines), α = 0.8 (dashed

lines), and α = 1 (solid lines), as predicted by the Navier–Stokes and kinetic theory descrip-
tions.

1 m/s. Although terms of order higher than g2 in (4.5) might not be negligi-
ble for this particular value of gλ0/v

2
0, the qualitative features are expected

to remain correct. Fig. 2 shows the temperature profiles for a granular gas
with α = 0.5 and α = 0.8, as well as for a gas of elastic particles (α = 1), as
predicted by the NS and kinetic theory descriptions. We observe that strong
deviations from the NS profiles are apparent, both for elastic and inelastic
systems. Focusing now on the profiles predicted by the kinetic model, we
se that, as the inelasticity increases, the locations of the two maxima shift
towards the center of the slab and the value of the maximum temperature
decreases. This behavior, however, is reversed if α � 0.4. The α-dependence
of |ymax|/λ0 and (Tmax −T0)/T0 is displayed in Fig. 3. The non-monotonic
behaviors of ymax and Tmax are consequences of that of A4(α).

4.2. Fluxes

The profiles for the elements of the pressure tensor and the com-
ponents of the heat flux through second order are given by Eqs. (3.29),
(3.30), and (3.36)–(3.38). Expressed in real units, they are

Pyz(y)=−ρ0gy +O(g3), (4.9)

Pyy =p0

[
1− 12

25

102+87ζ ∗
0 +13ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2

ρ0η
2
0g

2

p3
0

]
+O(g4), (4.10)

Pzz(y)=p0

[
1+16

25

82+67ζ ∗
0 +8ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2

ρ0η
2
0g

2

p3
0

+14
5

(
mg

T0

)2

y2

]
+O(g4),

(4.11)
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Fig. 3. Plot of |ymax|/λ0 and (Tmax − T0)/T0 vs. α. In the latter case we have taken
gλ0/v

2
0 =0.05.

qy(y)= ρ2
0g2

3η0
y3 +O(g4), (4.12)

qz = 2
5
mκ0g +O(g3). (4.13)

The xx-element of the pressure tensor is Pxx = 3p − Pyy − Pzz. Note that
Pyy is uniform, in agreement with the exact balance equation (2.22). Like-
wise, it is easy to check that Eqs. (4.2), (4.9), and (4.12) are consistent with
the energy balance equation (2.24). Moreover, since the density profile is
known through second order [cf. Eqs. (4.1) and (4.3)], Eq. (2.23) can be
used to get Pyz through third order.

The shear stress Pyz agrees to second order in g with Newton’s vis-
cosity law (2.26). However, the component qy of the heat flux parallel to
the thermal gradient does not obey Fourier’s law (2.27) (note that µ≈0 in
the heated state). In fact, from Eqs. (4.3) and (4.12) one can write an

qy =−κ
∂

∂y

(
T + y2

max

6
∇2T

)
+O(g4), (4.14)
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which shows that one needs to incorporate super-Burnett contributions to
account for the relationship between the heat flux and the thermal gra-
dients. The extra term on the right-hand side of Eq. (4.14) is responsible
for the counter-intuitive fact of qy having the same sign as ∂T /∂y in the
region 0� |y| < |ymax|, i.e., the temperature increases as one moves away
from the mid layer y =0 and yet the heat flows outward from the colder to
the hotter layers. A steady state is still possible because the energy deficit
is compensated for by the viscous heating. An additional departure from
Fourier’s law is related to the existence of a component qz of the heat flux
normal to the thermal gradient, an effect that is already of first order in
g and is related to a Burnett contribution associated with ∇2uz.(8)

Equations (4.1), (4.10), and (4.11) show that normal stress differences
appear to order g2. It is easy to check that Pyy <Pxx <p <Pzz, i.e., nor-
mal stresses are maximal along the flow direction and minimal along the
direction normal to the plates. In order to characterize the normal stress
differences, let us define the viscometric quantities

�1(y)≡ Pzz(y)−Pxx(y)

p(y)
, �2(y)≡ Pzz(y)−Pyy

p(y)
. (4.15)

Their expressions are

�1(y) =
[

150π
827−733α +158α2

(1+α)2(23−11α)2(3−α)(7−4α)

+8
(

y

λ0

)2
](

gλ0

v2
0

)2

+O(g4), (4.16)

�2(y) =
[

6π
38467−34763α +7708α2

(1+α)2(23−11α)2(3−α)(7−4α)

+56
5

(
y

λ0

)2
](

gλ0

v2
0

)2

+O(g4). (4.17)

Fig. 4 shows the profiles of �1(y) and �2(y) for α=0.5, α=0.8, and α=1
in the case gλ0/v

2
0 = 0.05. We observe that the normal stress differences

increase with the separation from the mid layer y = 0. Moreover, those
differences are more important for elastic gases (α = 1) than for inelastic
gases (α =0.8 and α =0.5). However, as in the case of the quantities plot-
ted in Fig. 3, the α-dependence of �1 and �2 is not monotonic. This is
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Fig. 4. Profiles of the normal stress differences �1 = (Pzz −Pxx)/p and �2 = (Pzz −Pyy)/p

for gλ0/v
2
0 = 0.05 and α = 0.5 (dotted lines), α = 0.8 (dashed lines), and α = 1 (solid lines).

Note that �1 =�2 =0 in the NS description.
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Fig. 5. Plot of the normal stress differences �1 = (Pzz − Pxx)/p and �2 = (Pzz − Pyy)/p,
evaluated at y =0, vs. α for gλ0/v

2
0 =0.05.

illustrated in Fig. 5 for the point y =0. We observe that the minimum val-
ues of �1(0) and �2(0) occur at α ≈0.5.

5. CONCLUDING REMARKS

In this paper we have carried out a kinetic theory study of the steady
planar Poiseuille flow undergone by a dilute granular gas under the action
of the acceleration of gravity. In order to compensate locally for the energy
loss due to the inelasticity of collisions, an external energy input in the
form of a white noise driving has been assumed. This type of driving
mechanism has been introduced in the literature to mimic the heating
effects due vibrating boundaries without the complications associated with
boundary effects. This is especially convenient in our approach, since we
have been mainly interested in the bulk properties of the gas, namely in
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a slab centered in the middle layer having a width of the order of several
mean free paths, away from the walls.

Since granular gases are made of mesoscopic particles, terrestrial grav-
ity (g = 9.8 m/s2) plays in general a relevant role, in contrast to the
case of molecular gases. The dimensionless parameter characterizing the
influence of gravity during the free flight of a particle between two suc-
cessive collisions is gλ/v2

th, where λ is the mean free path and vth is a
typical (thermal) velocity. Under many conditions of practical interest, the
parameter gλ/v2

th can have a non-negligible effect and yet be sufficiently
small as to justify a perturbative treatment. For instance, if λ∼1 mm–1 cm
and vth � 1 m/s, which are typical values in experiments on metallic or
glass spheres, one can have gλ/v2

th ∼10−3–10−1. Therefore, in our study we
have performed a perturbation expansion of the velocity distribution func-
tion in powers of the gravity strength through second order. The reference
state (i.e., the state at zero gravity) is the steady uniform state heated by a
white noise thermostat. Since the Boltzmann equation for inelastic spheres
is quite complicated to deal with, we have employed a kinetic model equa-
tion inspired in the BGK model. This has allowed us to obtain explic-
itly the velocity distribution function through second order in terms of the
velocity vector, the spatial coordinate, and the coefficient of restitution.
By velocity integration one can obtain any desired moment, but here we
have focused on the hydrodynamic fields (pressure, flow velocity, and gran-
ular temperature) and their associated fluxes (stress tensor and heat flux
vector).

The results show that the non-Newtonian features previously stud-
ied in the case of elastic particles(5,8,9,11,13,14,16) persist when inelasticity
is present. In particular, the temperature profile T (y) exhibits a bimodal
shape: it has a local minimum T0 at the central layer and reaches two sym-
metric maxima Tmax at a distance |ymax| of about three mean free paths.
The relative height of the two maxima, (Tmax − T0)/T0 is about 10 times
the square of the dimensionless parameter gλ/v2

th. On the other hand, the
heat flows outward from the central layer, so it goes from the colder to the
hotter layers within the region |y| < |ymax|. Other non-Newtonian effects
include normal stress differences and the existence of a component of the
heat flux parallel to the flow and hence normal to the thermal gradient.

The fact that the nonlinear transport properties of the granular
Poiseuille flow are qualitatively similar to those of the elastic case does not
come as a surprise, especially since the characteristic collisional cooling of
the granular gas is balanced by an external driving. In that context, our
aim in the present work has been two-fold. On the one hand, the exam-
ple of gravity-driven Poiseuille flow allows one to emphasize once more
that granular gases constitute an excellent playground to reveal interesting
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(and even counter-intuitive) non-Newtonian phenomena on scales accessi-
ble to laboratory conditions. More importantly, we wanted to assess the
influence of inelasticity on the departure of the Poiseuille profiles from the
NS predictions. This influence is not easy to foretell a priori by means of
intuitive or hand-waving arguments. According to the results reported in
this paper, for small or moderate inelasticity (say α �0.5) there is a slight
decrease in the quantitative deviations from the NS profiles as inelastic-
ity grows: the two temperature maxima becomes lower and closer, while
the normal stress differences become smaller. The opposite behavior takes
place for high inelasticity (α � 0.5), although that range is less interesting
from an experimental point of view.
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APPENDIX A.: EXPRESSIONS FOR THE COEFFICIENTS bi, ci, AND di

In this Appendix we list the explicit expressions of the coefficients in
the expression for the velocity distribution function to order g2, Eq. (3.34).
They are

b0 = −4
5

(2+5ζ ∗
0 )(5+7ζ ∗

0 +6ζ ∗
0

2)

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.1)

b1 = 8
25

160+622ζ ∗
0 −1051ζ ∗

0
2 −2829ζ ∗

0
3 −1696ζ ∗

0
4 −276ζ ∗

0
5

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )2(2+7ζ ∗
0 +6ζ ∗

0
2)

, (A.2)

b2 = −48
5

1+3ζ ∗
0

(1+ ζ ∗
0 )(2+ ζ ∗

0 )(2+3ζ ∗
0 )

, b3 =0, (A.3)

b4 = −32
5

5+29ζ ∗
0 +12ζ ∗

0
2

(1+ ζ ∗
0 )(2+ ζ ∗

0 )(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.4)

b5 = 32
5

(5+2ζ ∗
0 )(1+3ζ ∗

0 )

(1+ ζ ∗
0 )(2+ ζ ∗

0 )(2+3ζ ∗
0 )

, b6 =−16
5

ζ ∗
0

1+ ζ ∗
0

, b7 =−8
3
,

(A.5)

c0 = 8
4+12ζ ∗

0 +113ζ ∗
0

2 +176ζ ∗
0

3 +79ζ ∗
0

4 +6ζ ∗
0

5

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )2(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.6)
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c1 = −32
(3+2ζ ∗

0 )(2−11ζ ∗
0 −12ζ ∗

0
2)

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )2(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.7)

c2 = 16
8−22ζ ∗

0 −23ζ ∗
0

2 −3ζ ∗
0

3

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2(2+3ζ ∗
0 )

, c3 =8
ζ ∗

0

1+ ζ ∗
0

, (A.8)

c4 = 64
3+2ζ ∗

0

(1+ ζ ∗
0 )(2+ ζ ∗

0 )(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.9)

c5 = −64
3+2ζ ∗

0

(1+ ζ ∗
0 )(2+ ζ ∗

0 )(2+3ζ ∗
0 )

, c6 = 16
1+ ζ ∗

0
, (A.10)

d0 = 8
25

ζ ∗
0

76−48ζ ∗
0 −137ζ ∗

0
2 +7ζ ∗

0
3 +42ζ ∗

0
4

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )2(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.11)

d1 = 16
25

76−48ζ ∗
0 −137ζ ∗

0
2 +7ζ ∗

0
3 +42ζ ∗

0
4

(1+ ζ ∗
0 )2(2+ ζ ∗

0 )2(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.12)

d2 = −16
25

76+40ζ ∗
0 +23ζ ∗

0
2 +21ζ ∗

0
3

(1+ ζ ∗
0 )(2+ ζ ∗

0 )2(2+3ζ ∗
0 )

, d3 =−8
5

ζ ∗
0

1+ ζ ∗
0

, (A.13)

d4 = −64
5

1
(1+ ζ ∗

0 )(1+2ζ ∗
0 )(2+3ζ ∗

0 )
, (A.14)

d5 = 64
5

1
(1+ ζ ∗

0 )(2+3ζ ∗
0 )

, d6 =−16
5

1
1+ ζ ∗

0
, d7 = 16

15
.

(A.15)
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26. E. Falcon, R. Wunenburger, P. Évesque, S. Fauve, C. Chabot, Y. Garrabos, and D. Bey-
sens, Cluster formation in a granular medium fluidized by vibrations in low gravity,
Phys. Rev. Lett. 83:440–443 (1999).



928 Tij and Santos

27. J. J. Brey, J. W. Dufty, and A. Santos, Kinetic models for granular flow, J. Stat. Phys.
97:281–322 (1999).

28. C. Cercignani, The Boltzmann Equation and Its Applications (Springer–Verlag, New York,
1988).

29. A. Goldshtein and M. Shapiro, Mechanics of collisional motion of granular materials.
Part 1. General hydrodynamic equations, J. Fluid Mech. 282:75–114 (1995).

30. J. J. Brey, J. W. Dufty, and A. Santos, Dissipative dynamics for hard spheres, J. Stat.
Phys. 87:1051–1066 (1997).

31. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Hydrodynamics for granular flow at
low density, Phys. Rev. E 58:4638–4653 (1998).

32. D. R. M. Williams and F. C. MacKintosh, Driven granular media in one dimension:
correlations and equation of state, Phys. Rev. E 54:R9–R12 (1996); D. R. M. Williams,
Driven granular media and dissipative gases: correlations and liquid-gas phase transi-
tions, Physica A 233:718–729 (1996).

33. T. P. C. van Noije and M. H. Ernst, Velocity distributions in homogeneous granular flu-
ids: the free and the heated case, Gran. Matt. 1:57–64 (1998).
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